

Electrification Technology (ELT)

Electric Drive Technology Analysis

GREGORY S. SMITH
FLEX POWER CONTROL
JUNE 19, 2018

PROJECT ID: ELT088

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Objective and Relevance

- •Understand and define drivers to enable large market penetration of electrification technologies focusing on power electronics and motors
 - Understand the market trends and needs
 - Understand how technology insertion occurs
 - Breadth and depth of technology considered
 - Viability of technology
 - Commercialization

State of Transportation

- Achievements beyond what were thought to be possible have been accomplished
 - High reliability and performance are yielding everyday driver capable vehicles, when not that long ago EVs were thought of as a second or third car only
- Vehicle Technology Electric Drive has made a difference and continues to do so
- Challenge is having technologies that enable a wide range of vehicle types and purposes

Challenges of Electrifying ICE Vehicles

- Vehicles are optimized for Internal Combustion (IC)
- Remaining open space may not be available (e.g. crash)
- •Consumers don't want to make compromises in vehicle features (i.e. usable vehicle space)
- Creating benefits that offset additional cost
 - Operating cost
 - Performance benefit (i.e. AWD)

P1: Belt Driven Starter (up to 18,000 RPM)

P2: Electric Machine on gear input

P3: Electric Machine on gear output

P4: Axle Drive (12,000 RPM)

K0: Clutch (Separation)

K1: Clutch (Startup)

Chevrolet Malibu Hybrid

- 4.2 Cu Ft less trunk space
- 12V battery is moved from under hood to trunk to make room for electronics

Example Conventional vs. Hybrid

Ford Fusion

- Hybrid version has 4.0 Cu Ft less trunk space
- 12V battery is moved from under hood to trunk to make room for electronics

Toyota Camry

- Hybrid version has 2.3 Cu Ft less trunk space
- 12V battery is moved from under hood to trunk to make room for electronics

EV Architectures

EARLY INDUSTRY EV'S

- Small vehicles
- •Typically dedicated individual components for each vehicle

PURPOSE BUILT EV'S

- Scalable architecture
 - Small and large vehicles
 - Running chassis (skateboard)
 - Maximize useable space
 - Multiple vehicle types

Looking Towards 2025

- Moving towards pure EVs from Hybrids
 - > 200 mile range
 - Increased consumer acceptance
 - ≥ 60 kWh energy storage
 - Required for extended range
 - Propulsion power ≥ 150 kW
 - Provide reasonable acceleration
 - Mass of vehicles > 3,500 lbs.
 - Increases in spite of light-weighting
- Integrating Powertrain into Chassis
 - Production of multiple vehicle types
 - Integration into flat package

OWER Chassis

- Skateboard increases usable space for vehicle footprint & production scalability
- Electric drive enables skateboard design
- Industry examples of skateboard chassis
 - GM Autonomy Concept
 - Tesla Model S and Model 3
 - Daimler Autonomous Concept
 - Jaguar
 - Faraday Future

Jaguar I Pace

Faraday Future

Trends in Transportation

- "Mobility as a Service"
- Fleet Perspective
- 15 year/300K miles
- Charging
 - Grid Infrastructure (GITT)
 - Battery (EESTT)
 - Power Transfer (EETT)
 - Dynamic Wireless Charging
 - Extreme Fast Charging
 - Autonomous (wireless with auto docking)

Picture courtesy of GM

OWER R&D to Commercialization

Technology Deployment Findings

- Lack of system and component understanding of Tier
 2, 3, and 4 suppliers
 - Detailed understanding of impact of supplied part/material not available
 - Trade-offs not understood
 - Unable to make timely R&D or product engineering decisions
- •OEM's and Tier 1's desire to have engineered fundamental understanding of new technology/techniques/materials

Need: Method of continuous collaborative and coordinated technology engagement!

Strategy Based on Learning

- Accelerate innovation, understanding and adoption of technology
- •Engage industry from OEMs, Tier 1, 2, and 3 suppliers, equipment manufacturers, and National Labs
- Engage National Labs and Universities for fundamental technology shifts necessary in materials and approaches

- Co-Develop with suppliers power electronics and motors
 - Design, develop, and build hardware with suppliers
 - Engage suppliers in trade-studies and testing to further mutual understanding of components
 - Educate lab personnel in limitations and trade-offs of producing part/material
 - Create fundamental understanding for suppliers so they may contribute to innovation.

Supply Base critical to meeting program targets!

Increasing Commercialization Potential

- Science out new technology/techniques/materials in a comparative study
 - National Lab job is to enable technology not create product
 - Comparative design approaches can create tremendous value by creating detailed data
 - Enables advanced development engineering decisions to incorporate technology
 - Lab work results would directly feed advanced development at OEM's and Tier 1's

Well defined evaluation criteria critical for commercialization!

- Implementation of approach for broadening technology base and increasing commercialization
 - Establishment of process and procedures
 - Working Documents
 - Defines tasks to be performed
 - Goals and objectives of technology evaluation
 - Roles and responsibilities
 - Exit Criteria
 - Building supplier involvement
 - Engaging supply base on the 2025 inverter and motor
 - Developing ongoing working relationship between suppliers and National Labs

Any proposed future work is subject to change based on funding levels

- •Relevance: Understand and define drivers to enable large market penetration of electrification technologies
- •Approach: Work with OEM's, supply base, and researchers on identifying, understanding, and documenting barriers of introducing technology
- •Collaborations: Working with the supply base, OEMs, National Labs, and DOE
- Technical Accomplishments:
 - Decision drivers identified
 - Process GAPS
 - Broadening Technology
 - Commercialization
- •Future Work: Implementation of process and continued engagement

Any proposed future work is subject to change based on funding levels

Backup Slides

Initial Collaboration

Critical Technology Elements

OEM

Tier 1

Tier 2

Tier 3

Critical Assumptions and Issues

Critical assumptions

- Information provided by all constituents was given accurately
- All parties have a vested interest in successful deployment of electrification technology
- Technology process is flexible and can be adjusted as appropriate by constituents
- Mitigation strategy
 - Continued engagement and consensus of broad based coalition of stakeholders

- •Work with OEM's, supply base, and researchers on identifying, understanding, and documenting barriers of introducing technology
- Broaden technology base
 - Adapt technology to new uses
 - Incorporate/enable supply base technology into electrification 2025 goals
- •Align and facilitate introduction of next generation of power electronics and electric machine devices and materials (i.e. WBG, covetic materials)
 - Reduce cost of the traction drive system by 50%
 - Reduce size of the traction drive system by 90%
 - Reduce cycle time from R&D to commercialization by 30%
- Uniqueness Evaluates technology insertion as an ecosystem/process

Major Challenges and Barriers

- Cost still remains the leading factor
- Size and mass constrain the number of vehicle applications
- The need for higher power devices driven by market demand
- •Taking advantage of Wide Band Gap requires significant technology changes over current Silicon based systems
 - Electrical performance and temperature capability of packaging
- •Decrease motor cost that is predominately driven by total material and overall size of the motor
 - Developing New Magnets without Heavy Rare-Earth and Non-Rare Earth Magnets
 - Developing Electrical Steels
 - Developing Motor designs without Heavy Rare-Earth that meet targets
- Motor Efficiency
 - Dependent on system need and specific motor application

- Research focuses on addressing those gaps that are not or can't be worked by industry
 - Special technical knowledge needed to address
 - Analytical capability/resources to understand fundamental elements
- Identified technology gaps
 - OEMs driven
 - 100kW and greater WBG inverters
 - · Micro packaging of power electronics
 - Non-rare earth machines
 - Improved materials and processes (i.e. copper, steel, etc.)
 - Supplier base driven
 - System trade-offs
 - Standard tests and requirements understanding
 - What does it mean as you move toward margins of performance
- Production scale needed to be competitive 500K units per year